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A method for extracting hadron states in confining field theories (QCD) from the asymptotic 
behavior of two-point functions and the imposition of confinement through the removal of cuts 
is reviewed and generalized to take explicit account of the spin-½ nature of the constituents. The 
role of perturbative corrections is discussed and explored numerically with anomalous dimension 
for arbitrary spin J and to sixth order for the specific example of spin-1 hadronic states. We 
conclude that the effects of these are significant though incapable of leading to linear Regge 
trajectories, and that the main features of the hadron spectrum must come from the non- 
perturbative inverse power corrections. 

1. Introduct ion 

Q C D  in SU(N)  of color is be l ieved to be a confining theory,  i.e. there are no 

cuts cor responding  to decay of hadrons  into free quarks;  moreover ,  in the N ~ o0 

limit physical cuts f rom the decay of hadrons  disappear  and the hadronic  spect rum 

is discrete [1]. Two-po in t  funct ions  of the type 

G( t )  = (-~-~)4 d4x eikX(o]T(O(1)(x)O(2~(O))[O), (1.1) 

where  t is a variable,  re la ted  to k 2, that  will be specified below, and where  O (1~, 

O (2~ are local opera tors  character ized by a definite Lorentz  spin, will have a po in t  

spectrum,  with the poles of G(t )  located at values of t de t e rmined  by the masses 

of hadrons  that  can be created by the opera tors  O (1~, O (2~ acting on  the physical 
vacuum.  

A scheme has b e e n  proposed  [2-7]  that  uses an asymptot ic  approx imat ion  to 

G(t) ,  GA(t), such as would  be genera ted  by pe r tu rba t ion  theory  (because of 

asymptot ic  f reedom) or by n o n - p e r t u r b a t i v e  inverse power  correct ions [8], to 
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construct  a cutless G ( t )  that  approximates  G(t)  for both  asymptot ic  and non-  

asymptot ic  values of t. The  posit ions and coupling strengths of the bound-s ta te  

poles are thereby  determined.  
As  we explain below, in lowest order  of per turba t ion  theory  the construct ion 

describes a free particle in an infinite well. However ,  the details of the construct ion 
are not  uniquely specified. This is because the input approximat ion  contains too  
little informat ion to specify the spin of the particle that  appears  in the "vacuum 
polar iza t ion"  induced by the "cur ren ts"  O (11, O/2). Bet ter  approximat ions  (including 

non-per turba t ive  inverse power  effects) presumably  supply that information• It 
turns out,  however ,  that  the limitation in the original form of the construct ion [4], 

which is appropr ia te  for spinless particles, can be remedied  at the lowest order  
• 1 level in a simple and physically reasonable  way. For  a spin-5 particle we are led to 

a new construct ion that  emphasizes  analyticity in its energy  E and brings in 

half- integer values of angular momentum•  Not  only does the new algori thm give 
• 1 • lowest order  results consistent with a spin-5 parUcle in the naive bag*, but  it retains 

the basic f r amework  for the sys temat i c  s tudy of the effects on the spec t rum of 
interact ion correct ions to the asymptot ic  behavior.  These  correct ions can be either 

perturbat ive,  which give logari thmic correct ions to the lowest order  approximat ion ,  
or  inverse power  correct ions [8] that  are non-per turba t ive  and could be genera ted  

by instanton effects, for example**.  
The  general form of the asymptot ic  approximat ion  will be of the form 

GA(t) , t ~ (1  + n o n - l e a d i n g  te rms) .  
t ---~ c ~  

(1.2) 

GA(t) clearly has cuts. The  confining algori thm is based on the construct ion [4] of 
a cutless G ( t )  that  is asymptotical ly closer to GA(t) than any inverse power  of t, 
and therefore  approximates  G(t)  everywhere•  The tool  is a set of m o m e n t  condit ions 
that have a unique solution once  C D D  singularities [6] are disposed of. We  shall 
assume that  these C D D  poles are reduced to the min imum possible and that there 

are no ext raneous  arbi t rary parameters  in the theory.  
The  cuts which are r emoved  by this me thod  are the cuts in the qC:l ampli tude 

cor responding  to decay into unbound  quarks  and antiquarks.  There  is a series of 
correct ions [3], of order N -1, which will introduce physical cuts and thus give a 
width to all unstable particles• We do not  treat  these, and thus, to use old-fashioned 
language,  may  be said to be working in the "na r row resonance"  approximat ion.  

* By naive bag or bag we mean only that confinement occurs through a boundary condition at some 
radius R. None of the intricacies of the MIT bag (see ref. [9]) are implied. 

** We believe that the true G(t) inserted into our algorithm would reproduce itself, and that using 
non-perturbative contributions in the "asymptotic" two-point function does not imply double 
counting of the confinement effects brought in through the cut-removal part of the algorithm. In 
fact it is the (presumably non-perturbative) inverse power corrections which will allow us to eliminate 
the "bag radius" R. 
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It turns Out that  the m o m e n t  condit ions depend  on whether  one  treats the 
functions as having analyticity propert ies  in E 2 (as for a spinless particle) or in E 
(as will be seen to be appropr ia te  for spin -1 particles). The  spinless case is the one  

t rea ted  earlier [4, 6]. The  central  result  of  this paper  is the derivat ion of the m o m e n t  
condit ions and their solution for the latter case. In sect. 2 we review the basic ideas 

and earlier t reatment ,  and describe in more  detail the limitations discussed above. 
In sect. 3 we describe the algori thm appropr ia te  for spin-½ particles. In sect. 4 we 

discuss the cor responding  trajectories in leading order  and briefly explore the role 
of the per turbat ive  logari thmic correct ions th rough  the anomalous  d imension and 

with a sixth order  example.  With  a realistic value for the Q C D  coupl ing we shall 
see that a not  unreasonable  p - t ra jec to ry  emerges.  

2. Confinement algorithm 

We assume we have calculated the asymptot ic  approximat ion  to the two-poin t  
funct ion of interest, GA(t). To remove  the cut f rom GA(t) to construct  G(t)  we 
write [4] 

N(t )  
G(t)  = GA(t) + - -  (2.1) 

D(t)  ' 

where  D(t)  is an entire functions,  whose zeros are the poles of G(t). The choice 
of N(t )  that  removes  the cut is 

1 1" ~ Im [ G ( t ' ) -  GA(t ')]  
N(t )  = ~ |a~o ~ l_)(t . . . .  ) dt' 

= - -~  dt' D(t ' )  Im GA(t') 
o t ' - -  t (2.2) 

Thus,  

G( t )=  Ga[t] 1 1 ft ~ Im G A ( t ' ) D ( t , ) .  (2.3) 
~r D( t )  dt' t ' - t  

0 

D(t)  is de te rmined  by the requ i rement  that  G ( t ) - G A ( t )  vanishes faster than any 
inverse power  of t as I t l~oo,  and that  G(t) has poles with positive residues. This 
leads to a set of m o m e n t  condit ions [4], 

o o  

ft t'p Im GA(t')D(t ')  dt '  = 0 ,  p = 0, 1, 2 . . . . .  (2.4) 
O 

It is convenient  to choose  t such that  the lower limit is zero,  which yields the 
m o m e n t  condit ions 

CX3 

Io t'p Im GA(t')D(t ')  dt '  = 0 ,  p = 0, 1, 2 . . . . .  (2.5) 



96 P.M. F i shbane  et al. / B o u n d  states in O C D  

The solution of the moment conditions (2.5) is discussed at length elsewhere [6] 
There are in general infinitely many solutions involving infinitely many constants. 
With the elimination of all CDD singularities, the solution is unique. It is straight- 

forward to show that Im GA(t) = t v implies that 

D0(v, t) = C(2R~/t) ~J~(2R~/t), (2.6) 

i.e. the Bessel function with the cut removed. The zero subscript on Do is used to 

denote that only the leading asymptotic term in Im GA(t) is used. The so far arbitrary 
scale parameter, R, will be discussed below. 

Ref. [6] contains discussion of the general problem of the uniqueness of cut 
removal with minimum numbers of arbitrary constants. We believe that the rational 
function approximation, or moment condition method, is the most efficient from 

the point of view of convergence; in any case the result is unique. 
We see that the poles are located at the zeros of the Bessel function. When 

Im GA(t )  = t~[1 + h f l ( t ) + "  " • ] ,  

then eq. (2.5) can be systematically solved either by use of a Green function [7, 10] 

or, for f/(t) an inverse power of t, by a simple ansatz [6] which shows D(~,, t) to be 
a series of Bessel functions. It is interesting to observe that the zeros of J~ are just 
the energy levels for a free spinless particle in a non-relativistic infinite spherical 
well. This observation provides us with the direction for the search for a modified 
confinement algorithm: since the quarks have spin-~ we look for a scheme that will 
yield, to lowest order, a solution to the moment equations that looks like the 
solution of the Dirac equation with an infinite spherical well. This will be discussed 

in detail in sect. 3. 
The scale parameter R is free. With leading power t" alone, R is fixed by fixing 

the location of the first zero, and thus all "recurrences" for a given spin are predicted. 
Choosing R is equivalent to choosing the radius of an infinite well or bag. In view 

of growing evidence that confinement occurs in a potential that is asymptotically 
linear, this may appear to be a very restrictive type of confinement. Actually, as 
soon as corrections to the t ~ behavior are available, another procedure, the a-  
expansion [3-5] becomes available, and there R no longer appears as a parameter. 
Qualitatively the role of R may be understood as follows: Consider a GA(t )  given 

by 

GA(t)--t~( l + ~ )  . (2.7) 

When n ~ oo, the dependence on ~ disappears and we get the result (2.6). The 
choice n = cc is, however, a well-defined choice and corresponds to a free particle 
with a leading interaction correction ,~/t ~ which can be shown [6] to be equivalent 
to a Schr6dinger potential (r/R) ~, i.e. the well. R does not appear in (2.7) and it 
represents the heuristic introduction of a bag when we have no explicit corrections 
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tO t". Cor rec t ions  such as (2.7) wi th  finite n r e p r e s e n t  the  asser t ion  of a confining 

po ten t i a l  and  al low us to ignore  the  t ~ co r rec t ions  which r e p r e s e n t  the  well.  The  

c~-expansion is a p p r o p r i a t e  for  finite n and R no longer  a ppe a r s  when  it is appl ied .  

The  l ead ing  t e rm  in Im GA(t) descr ibes  the  l a rge - t  behav io r  and  thus  the  shor t -  

d i s tance  b e h a v i o r  of the  in te rac t ion  [6]. Thus  the  lowest  lying b o u n d  s ta tes  should  

be  desc r ibed  sa t i s fac tor i ly  with our  p rocedu re .  The  h igher  lying s ta tes  will be 

d e t e r m i n e d  m o r e  accura te ly  as m o r e  cor rec t ions  are  a d d e d  in Im GA(t) .  

The  p r o c e d u r e  that  leads  to (2.6) is i n a d e q u a t e  when  f e rmion  o p e r a t o r s  a re  

involved .  A signal  for  this is tha t  v is typica l ly  an in teger  in lowest  o rder .  F o r  

examp le  with 

O~1~= O~2~= ~ y ~  (2.8) 

the  lowest  o r d e r  t e rm  in Im GA(t)  is ca lcu la ted  using the f e rmion  loop,  and  when  

the a p p r o p r i a t e  t enso r  fac tor  [7] (g~,v - k , k v / k  2) is r e m o v e d  u = 1. The  zeros  of J1 

do not desc r ibe  a f ree  f e rmion  in a well,  for  which a l inear  c o m b i n a t i o n  of J1/2 and 

J3/2 is needed* .  A s  no ted  be fo re ,  the  a sympto t i c  fo rm t v does  not  con ta in  enough  

in fo rmat ion .  This  is ev iden t  f rom the  fact tha t  with scalar  cons t i tuen ts  and  

O ~1~= O ~2~= ,/,+ 3.4, (2.9) 

one  again  gets p = 1, even  though  one  would  not  expec t  the  spec t rum of " sca la r  

p o s i t r o n i u m "  to be  r e l a t ed  to that  of " sp ino r  p o s i t r o n i u m . "  Effec t ive ly  one  mus t  

look  m o r e  d e e p l y  into  the  s t ruc ture  of the  t w o - p o i n t  funct ion .  If one  looks  g raph i -  

cally at  a two-po in t  func t ion  one  sees tha t  the  imag ina ry  par t  rea l ly  is de sc r ibed  

by a f o u r - p o i n t  funct ion  which for  the  choice (2.8) descr ibes  q u a r k - a n t i q u a r k  

sca t te r ing  in the  cen te r  of m o m e n t u m ,  in a to ta l  angular  m o m e n t u m  1 s ta te  with 

each qua rk  having  ene rgy  E = ~ / ~ .  This  is why in a c o m p l e t e  ca lcula t ion  

(which would  have  to be  n o n - p e r t u r b a t i v e )  the  po les  in the  vacuum po la r i za t ion  

would  be those  found  in e l e c t r o n - p o s i t r o n  sca t te r ing  (pos i t ron ium)  in a Q E D  

calcula t ion.  

The  imag ina ry  pa r t  for  the  2 -po in t  funct ion  G( t )  has d i f ferent  ana ly t ic i ty  p r o p e r -  

t ies than  are  i n c o r p o r a t e d  into the  or ig inal  p r o g r a m .  It  is in gene ra l  ana ly t ic  in E 

r a the r  than  E 2 and the  c u t - r e m o v a l  p r o c e d u r e ,  eq. (2.2), mus t  be  gene ra l i zed  to 

t ake  this into account .  The  m o r e  genera l  fo rm takes  into account  l e f t -hand  and 

* For example, the free single particle radial Dirac equation is solved by F(r)=J1/2(kr) and G(r)= 
-~/ (E-  m)/(E+ m) J3/2(kr) for f = l + 21 and l = 0. All physically interesting quantities are combina- 
tions of F and G. Bag bound states are determined by F(R) + G (R) = 0. For the case of the interaction 
of two fermions of mass m, these wave functions and conditions will be repeated but m will be 
replaced by 2m and R by ½R. See ref. [11]. For unequal mass constituents, Moseley and Rosen 
further show how to generalize. 
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right-hand cuts in E, as is the case for a spinning particle. Thus we could write 

G(t) = Gn(t) 1 1 dE '  Im GA(t')DL(E') 
~" DL(t) ~ E ' -  E 

e ~  

1 1 f dE '  Im GA(t')DR(E') 
(2.10) 

~- DR(t) Jm E ' -  E ' 

where m is the mass of the particles that appear in the vacuum polarization, i.e., 
the quark mass. Note that the asymptotic approximation GA will not distinguish 

negative E from positive E. Instead, we are using the fact that G and hence D 
should make this distinction. In our algorithm this is made explicit by the use of 
separate boundary conditions for +m and - m .  These boundary conditions will 
differ for particles of different spins. 

How will the solutions reflect this analyticity structure? Left- and right-hand cuts 

are equivalent to D-functions which have even and odd pieces in E. Each piece 
will obey moment conditions like (2.5). The minimum CDD solution is determined 

by the minimum number of constants necessary to satisfy the boundary conditions 
appropriate to the spin. In this way we see that the differences between the spinless 

and spinning cases become only a matter of detail. 

• 1 3. Spm-~ construction 

In this section we study the modifications necessary when the absorptive part of 

the 2-point function involves fermion-fermion scattering. We shall show that the 
lowest order solution gives zeros at the bound states of a fermion in a naive bag, 
just as the lowest order solution for the spinless particle gave zeros at the bound 

states of a scalar particle in a naive bag. 
We wish to remove a cut in E rather than E 2 in the calculated Green function 

GA. This leads, as in eq. (1.4), to the new moment conditions 

m c ~  

I~o+J~)((ImGA)EPD(E)dE)=O,. . .  p = 0 , 1  . . . . .  (3.1) 

or equivalently 

0(3 

I m I m  GA[EPD(t ,, E) - (-E)PD(u, - E ) ]  dE  = 0 ,  = 0, 1 (3.2) P 

If we split D into parts even and odd in E, 

D(u, E) = Da(k 2) +EDb(k2), (3.3) 

we find, using kdk = EdE 

fo GA)k Da,b(k ) dk = 0 ,  n = 0, 1 (3.4) (Im 2n+1  2 
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The  funct ions  Da  and  Db o b e y  the  same  m o m e n t  cond i t ions  as the  funct ions  D in 

the  p rev ious  discussion.  

Le t  us suppose  now that  Im GA = t ~, whe re  we now m a k e  the  c onve n i e n t  choice  
t = lk2.  In this case,  the  so lu t ion  to (2.5) is given by  

D(O~ = k-"[aoJ , , (kR ) + a lkJv+l(kR ) + '  • -] (3.6a) a 

D~ °~ = k-~[ b o J d k R  ) + blkJ,~+l(ke ) q - "  • "]. (3.6b) 

The  infinite n u m b e r  of cons tan ts  in eqs. (3.6) is equ iva l en t  to the  C D D  ambigui ty .  

T h e  a s sumpt ion  of min ima l  asympto t ics  for  the  D - f u n c t i o n s ,  which co r r e sponds  to  

the  usual  dynamica l  cons t ra in t  that  had rons  are  dynamica l ly  d e t e r m i n e d ,  r educes  

these  cons tan t s  to a m i n i m u m  number .  In fact,  as we show below,  the  m i n i m u m  

cond i t ion  is bo, a0, and  a l  non -ze ro .  Choos ing  b0 = 1, which is an a rb i t r a ry  no rma l i z a -  

t ion for  Do = D ~  ~ + ED~b °~, we have 

Do = k ~ [(a0 + E)J,, ( kR  ) + a lkJ~ +1 (kR )] . (3.7) 

The  G r e e n  func t ion  itself is now d e t e r m i n e d  by the r e q u i r e m e n t  tha t  G 

k2~+  exponen t i a l l y  dec reas ing  te rms,  n a m e l y  

G(E ,  v ) =  k 2~ (ao + E ) J - ~ ( k R  ) -  a lkJ_~_l  ( kR  ) 
(ao+ E)J ,~ (kR)+a lkJv+l  ( kR )  

Do(-U,  E)  
- ( 3 . 8 )  

Do(u, E)  

W e  can call  on  our  expe r i ence  with so lu t ions  of the  D i rac  equa t ion  to genera l i ze  

(3.8) and  def ine  two new G r e e n  funct ions ,  

G±(v,  E )  = D~-(-v '  E )  
D~(v ,  E )  ' (3.9) 

c o r r e s p o n d i n g  to j = v = l+½ and  j = ~, - 1 = I - 1  for  G + and  G - ,  respect ive ly .  D ÷ 

is the  c o m b i n a t i o n  D a + E D b  def ined  above ;  D is a d i f ferent  c o m b i n a t i o n  which 

is given by  eq. (3.8) and  the Di rac  " t h r e s h o l d "  cond i t ions  below.  
O u r  cond i t ions  for  G ± will be 

{ k  ° ,  E ~ m ,  (3.10) 
G~:-) k T2 E - ~ - m  

The  cond i t ion  at E--* + m  gives us no th ing  new;  tha t  at E ~ - m  d e t e r m i n e s  a0 = m. 

The  cons tan t  a i r ema ins  as ye t  u n d e t e r m i n e d .  

W e  can find a l  by  using a M a c D o w e l l - t y p e  s y m m e t r y  tha t  a f ree  D i rac  par t i c le  
must  obey ,  

- k 2 G + ( v ,  - E )  = G - ( v  + 1, E )  . (3.11) 

This  equa t ion  refers  to s ta tes  of the  same  j bu t  of o p p o s i t e  par i ty  ( - 1 )  t. W h e n  
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applied to eqs. (3.8), the symmetry gives immediately al  2 = 1. The additional 
requirement that both solutions E ± for the bound states at D ±= 0 approach m 

from above chooses the root a 1 = - 1 .  
In summary, the leading order D-functions are 

+ 
Do (u, E) = k-V [(E + m )Y~ (kR)  - kJv+~ (kR)] , (3.12a) 

D o  (v, E)  = k ~[(E + m)J~(kR)  + kJv_~(kR)]. (3.12b) 

Higher order corrections of the form GA-+ t v(1 + gt a + . . . )  can now be handled 
analogously to the discussion in ref. [6]. In addition to the moment conditions, the 
D * must give G ± which satisfy the conditions (3.10). 

4. Perturbative corrections and numerical results 

In this section we discuss the role of logarithmic corrections; these corrections 
arise naturally in perturbative calculations of the 2-point functions. As an example 
which illustrates the numerical effect of these corrections we consider up to the 
sixth order in the 2-point function constructed with O ~1~= O ~2~ = ~ y ~ .  This quan- 
tity, which is of direct interest for ~(hadrons)/o-(C+C -) measured in e+e - annihila- 
tion, has been recently calculated [12]. The results of this calculation are inserted 

into the confining algorithm described in sect. 3 and thus provide a perturbative 
correction to the bag for fixed radius R. We find that the correction is numerically 

small and moreover provides only a constant shift in the position of the high-lying 

poles. This means the trajectory can never become linear as a result of the use of 

a single logarithmic correction. 
The single logarithm can be handled in two equivalent ways. Let us suppose that 

we are dealing with a function of the type 

I m f = A t V [ 1  +A In (4R2t)]. (4.1) 

This can be regarded as a standard power correction, as in sect. 2, by writing 

Im f = A f f [  l + A d  (4R2t)~ ~=0]" (4.2) 

The derivative with respect to e can be taken at the end. Alternatively, we have 

(4R2t)v[1 + a  In (4RZt)] = (4RZt)"+A[1 +O()t2)].  (4.3) 

This is the zeroth order form with a shifted value of u. Both eqs. (4.2) and (4.3) 
are equivalent because they lead to the same values of the bound-state poles. We 
shall discuss a concrete example of such a correction below. For now we assume 
eq. (4.1) holds and discuss the corresponding zeros. 

There are various ways to locate the zeros of the D ± function, corresponding to 
u = l+½=j.  For us it is most convenient simply to plot the zeros of D ~ ( v )  for a 
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+ 
sequence  of discrete values of v, then to interpolate  to the zeros of D o  (v + A). The  
relevant  zeros for D + in our  example will be a t / ' = ½ + A .  The  zeros of D-~(v) are 
given by the zeros of 

d~- (v) = (E + m)J~ (2R ,,/t) - 2 v/tJ~ + 1 (2R ,,/t), (4.4) 
or  of 

d~(u) = d~ (u)R 
(4.5) 

= [,/z2 + ~ 2 + ~ ] J ~ ( z ) - z L + l ( z ) .  

In eq. (4.5), we have defined the dimensionless variables 

z ~ 2R~/t  = ~/E-~ - m Z R ,  (4.6) 

lz =-- m R ,  (4.7) 

which are parameters  in the problem.  
We  plot  do  as a funct ion of z for  various u. The  zeros of this funct ion can then 

be located and plot ted for  v versus z ;  this last plot  represents  a Regge  trajectory.  
Fig. 1 shows a sample  plot of c7~ of u for the case v = 0. Fig. 2 gives the trajectories,  

given the zeros for v = 0, 1, and 2 read f rom graphs like fig. 1. 

12 r - - ' - - - - w - -  n 

10 

N 2 

v 

+ O  
' ~  0 

-2  

- 8  
0 

. = 8  

u--0 

I I 1 I I 1 I I I 
I 2 5 4 5 6 7 8 9 

Z 

Fig. 1. T h e  f u n c t i o n  d~(v,z), eq.  (4.4),  w i th  v = 0 ,  as a f u n c t i o n  of z=-~/-ff~-m2R for  v a r i o u s  

va lues  o f / z  ~- mR. T h e  ze ros  of  Jo(z) are  m a r k e d  b y  a full  d o t  a n d  r e p r e s e n t  the  ze ros  of  d ~ ( 0 ,  z)  in 
the  l imit  t* ~ oo. 
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Fig .  2.  T h e  v - t r a j e c t o r i e s ,  s o l i d  l ines ,  f o r  d o  (v, z ) ,  ] = v = / + ½, z = kR a n d  v. -= mR = 0,  1, 8 ,  oo. T h e  

z e r o s  o f  d o  (v, z ) ,  d a s h e d  l i n e , / "  = v - 1 = / - ½ f o r / x  = 0.  W h e n / z  --* oo, d ~  (v, z )  = d o  (v, z ) ,  i .e.  t h e r e  is 

n o  " s p i n - o r b i t "  s p l i t t i n g .  N o t e  t h e  s i gn  o f  t h e  s p i n - o r b i t  t e r m  c o r r e s p o n d s  t o  s c a l a r  c o n f i n e m e n t .  

The  t r a j ec to r i e s  b e c o m e  l inear  in z for  large z. This  can be seen by  (self- 

consis tent ly)  assuming  zeros  at z = O(v) .  W e  def ine a by  z = v sech a (i.e. z ~< v; 

we get  only  the  l ead ing  t r a j ec to ry  this way) and can use D e b y e  a sympto t i c  

expans ions  for  J~ (v sech a )  and  J ' .  (v sech ~)  in the  a l t e rna t ive  fo rm 

( ~ / Z  2 if"/.~ 2 --/d~ (-~Y.-J',,) (4.8) d ~ - -  ) L - z  . 

F o r / ~  = 0, the  equa t ion  do  has so lu t ion  z = v. F o r  ~z = oo, the  equa t ion  d~ is the  

so lu t ion  of J~+x(Z)=0 ,  i.e. z = v + l .  C o m p a r i s o n  with fig. 2 shows that  these  

a sympto t i c  forms are  a l r e ady  well  a p p r o x i m a t e d  at low values  of v. Of course  a 

p lo t  l inear  in z = 2R ~/t versus  v will be  of the  form v - x/t, charac te r i s t i c  of the  

well,  c o m p a r e d  to the  conven t iona l  Regge  t r a j ec to ry  l inear  in t. 

F o r  a specific numer ica l  examp le  we could  set  v = ½ and  fit m and  R to the  p 

and  p '  s tates.  W e  find the r ea sonab l e  values  R = 0.72 fm and m = 370 MeV.  F o r  

compa r i son  with the  one  par t ic le  bag  p a r a m e t e r s  it shou ld  be  bo rn  in mind  tha t  m 

co r r e sponds  to twice the  qua rk  mass  and  R to half the  bag radius  [11]. W e  can 
p red ic t  the  loca t ion  of the  next  r ecu r rence  at M = 2.45 G e V  bu t  s ince in ze ro th  

o r d e r  our  conf inement  is in a square  well,  this s ta te  is very  l ikely  too  high. 



P.M. Fishbane et al. / Bound states in QCD 103 

F o r  a specific e x a m p l e  of l oga r i thmic  cor rec t ions  and  the i r  effects,  we tu rn  to 

the  2 -po in t  func t ion  

(/', (x) j , (0) )  = (~(x)y ,~(x)q t (O)y~(O)) .  (4.9) 

This  funct ion  has r ecen t ly  been  ca lcu la ted  [12] to sixth o r d e r  in the  coupl ing  for  

Q C D  in S U ( N )  of co lor  and  with an a rb i t r a ry  n u m b e r  Ne of flavors.  The  resul t  
for  la rge  t is, to  0(g6) ,  

I m f - -  (tR 2){1 + (  In (tR 2)}, (4.10) 

whe re  

= 3bid 2 , (4.1 l a )  

2 g 
= - a N = ~ N ,  (4.11b) 

b 1 = - 9 ~  2 1 -  1 1 -  N]"  (4.11c) 

A l t h o u g h  the  full  answer  for  (4.9) in ref. [12] is r e n o r m a l i z a t i o n  m e t h o d  d e p e n d e n t ,  

this d e p e n d e n c e  can be a b s o r b e d  into the  i r r e levan t  (for us) cons tan t  in f ront  of  

(4.10). T h e r e  is also a single p o w e r  of a in this overa l l  cons tant .  

The  numer ica l  effect of (4.10) is ve ry  small .  F o r  N = 3, Nf = 6 and,  say, a = 0.5, 

~" = - 0 . 0 4 .  Such a shift  f rom u = ½ is v i r tua l ly  invisible  on fig. 2. In pa r t i cu la r  the  

spacing of the  t r a j ec to r i e s  for  some  given ~z is a s econd  o r d e r  effect in ~'. 

F o r  a m o r e  gene ra l  2 -po in t  funct ion  the  0(o7) t e rm will have  a logar i thm,  due  

to the  a n o m a l o u s  d imens ion  Y~. Namely ,  we expec t  [13] in genera l  to O(g  4) 

Im f --t" { l + ~ T~ ln (tR2) } , (4.12) 

cx~ 

1 1 + 2 t y  1 ( n - l )  
Y n = 2  n ( n + l ~  = ( / + n ~ i + l ) "  (4.13) 

This  shifts the  p o w e r  n in a way  ~that d e p e n d s  on n. F o r  n = 1, the  case cons ide red  

above ,  y ,  = 0, in acco rdance  with the  resul t  (4.10). 

Fig. 3 shows the  resul t  of inclusion of the  a n o m a l o u s  d imens ion ,  again  using 

a = 0.5 ( d / 2 ~  = 0.24).  Al l  o the r  p a r a m e t e r s  a re  fixed f rom the  ze ro th  o r d e r  fit to 

p and  p ' ,  n a m e l y  m = 0.37 G e V  and R = 0.72 fm. W e  also inc lude  on this p lo t  the  

par t ic les* lying on the t r a j ec to ry .  The  change  is in the  r ight  d i rec t ion .  No te  that  

* Ref. [13] makes precise the operators which correspond to the anomalous dimensions, eq. (4.13), 
namely the twist-two traceless (or symmetric tensor) operators. For these operators the asymptotic 
behavior of Im f, eq. (4.12), is a continuous function of v and describes the so-called "vector" 
trajectory. The A2 shown in fig. 3 is assumed to correspond to this set of operators, as does the O. 
There will presumably be other trajectories corresponding to other sets of operators. 
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Fig. 3. The p, P' Regge trajectories to o rder  6. The p and P' (input) are marked  by full dots. The 
(6/27r) = 0 trajectory, fig. 2, with n = u+½,  Ix = m R  = 1.34, m = 0.37 GeV,  R = 0.7 fm is shown by the 
dot ted line. The solid line represents  the t rajectory with anomalous  d imension correction, eqs. (4.12), 

(4.13), with (6 /2r r )  = 0.24. The dashed line shows the function n (E) = 0.5 + 0 .83E  2 for reference.  

since the asymptotic form of the trajectory with anomalous dimension correction 
is u - E ,  the plotted trajectory will eventually turn over and cross the linear 
trajectory. However ,  this may happen at a point where the perturbat ive result is 
no longer valid, since eq. (4.13) can be rewritten as 

3, = _ 0 . 3 4 6 + 2 1 n n _  2 ~ A k  (4.14) 
k=2 n ( n  + l ) - - ( n  + k - - 1 )  ' 

where the A k  are a set of tabulated numbers. The In n term implies that for 
sufficiently large n, (d /2 r r )y ,  is not small. 

We could have taken an alternative tack, by fitting 6/2~r to a reasonable slope 
near n = 1. This would give 6/27r ~ 0.8, which corresponds to a Q C D  coupling 
constant high by a factor of roughly two. We do not take this approach because 
we expect that when power corrections come into play the p trajectory will straighten 
out and the same phenomenology will ask for a much smaller 6/2~-. 

Finally, we could also have done the same phenomenology for the J/g,  and Y 
Regge trajectories. The results are qualitatively very similar, the only change being 
different values of m and R in eq. (4.4). We reserve extended confrontation with 
the meson spectrum for the next stage, where we shall include the true confining 
force, which corresponds to corrections of order 1 / t  2. 

5. Conclusions 

The procedure we have discussed here is in some sense analogous to the develop- 
ment  of perturbat ive quantum field theory. By this we mean the following: In 
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perturbat ion theory we begin with free field quantities, such as propagators• Interac-  
tions are then introduced; they are described in terms of the free field propagators  
and some additional quantities, the interactions. In our case we start f rom a given 
leading asymptotic behavior,  t ~, and develop a two-point  function which corresponds 
to a free field in a confining well. The D-funct ion  Do which describes this behavior 
is analogous to the free propagator  in quantum field theory• The role of interactions, 
which are manifested in corrections to the leading asymptotic behavior,  then give 
a corrected two-point  function; the corresponding correction to the D-funct ion 
can be expressed in terms of Do and the correction to the asymptotic behavior.  
Just as interactions in quantum field theory lead, through renormalization, to a 
corrected set of parameters  for the " f ree"  field quantities, so too do the corrections 
to the leading asymptotic behavior  lead to confining behavior  which is closer 
to reality than the original infinite well confinement imposed in computat ion 

of D. 
Free field propagators  vary according to the spin of the propagating particle• We 

similarly have found that Do must be chosen through appropriate  analyticity 
behavior,  according to the spin of the fundamental  constituents of the operators  
making up the two-point  functions. This behavior  will then be naturally carried 
over  into the higher order calculations. We have in this paper  shown how additional 
information about  the spin of the particle assumed to be confined manifests itself 
through analyticity properties,  and in this way we have developed a connection 
between asymptotic behavior  of a two-point  function and the location of the bound 
states appropriate  for spin-~ constituents. This carries the initial work to a point 
where a realistic phenomenology of the spectrum of Q C D  can begin• 

We have looked at one piece of this phenomenology in this note. Corrections 
to the behavior  t ~ are of two types: non-per turbat ive power corrections and 
perturbat ive logarithmic corrections. The logarithmic corrections are short-range 
and will not by themselves be responsible for confinement• Nevertheless it is 
interesting to see if they have a substantial numerical effect on the location of the 
poles• Our  conclusion is that they do not beyond second order;  we have arrived 

• 1 at this conclusion by studying a specific two-point  function for spm-y particles 
calculated to sixth order. The effects of the anomalous dimension for arbitrary 
angular momen tum is substantial, although linearization of the trajectory will only 
come from power- type corrections• Contributions from power corrections represent  
a major  area to be explored in the future. These come from fermion mass terms, 
i.e. f rom chiral symmetry  breaking, and f rom other effects of the non-perturbat ive 
vacuum• 
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